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Abstract 

Solution to stiff initial value problems had been studied by authors, [6 ], [2 ], [3] 

and [4 ]. In the light of this, [5 ] proposed a new numerical integrator to cope with 

linear stiff first order initial value problems with constant matrix of order 2. 

As an extension of the work done in [5 ], we studied the order and convergence of 

the integrator. The integrator is of order 5 and the rate of convergence would be high 

for a very small meshsize, h. 

Introduction 

Stiff initial value problems were first encountered in the study of the matrix of springs of varying stiffness. 

Some researchers, [6 ], [10 ], [9 ], [8 ], and [7 ] had contributed immensely towards the solution of such 

differential Equations. 

Definition 1.1: STOER AND BULIRSCH [ 1 2 ]  
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Numerical Integrator For Solving 

Linear Stiff Initial Value Problem 

If yn denotes the numerical approximation to the exact solution y (x„ ) at x = xn 

then, adopting the interpolating function 

3.0: Convergence Of The Numerical Integrator 

We shall investigate the convergence of the numerical integrator by adopting the computer 

Algorithm proposed in [5]. 

Definition 3.1: Hairer, Norsett And Wanner [11] 

Let yn be the numerical approximate solution to a linear stiff first order initial value 

problem, and y(x„ ), the theoretical solution to the initial value problem. 
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on the personal computer with the meshsizes, h = 0. 01 and h = 0. 001 respectively. 

We observe that the numerical integrator converges to the exact solution in at most 20 

iterations for h = 0. 01 and in at most 10 iterations for h = 0. 001. 

4. Order Of The Numerical Integrator 

LAMBERT [3] and FATUNAL [2] showed that the order of numerical integration 

could be derived by exploring Taylor series expansion. 

According to WALSH [13], the numerical integrator has a truncation error at point 

 x = xn+ 1 n=0,l,2,... and is defined as 

tn+1 =y(Xn+1)-yn+| ................................ (4.1) 

where y(xn+1) is assumed to be the theoretical solution at x = xn+1 

Now, the numerical integrator has order p if for problem (1.1.2) 

tn +1 = ch
p+1

 (4.2) 

where c is a positive constant. That is, if Taylor series for the theoretical solution y(xn+1) and 

for yn+1 coincide up to (and including) the term h
p
 

we shall determine the order of the numerical integrator, by adopting Taylor 

expansion of y(xn+1) about x = xn with localizing assumption that there is no previous error, we 

have 
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In order that the integrator (2.2) converges, we do require to choose a small meshsize, 

h. Implementing the linear stiff initial value problem [5] 



 

Julian Ibezimako Mbegbu. 

hence, the numerical integrator is of order 5 and c = 1/720 

5.0. Conclusion 

We have discovered that the new numerical integrator proposed by [5] is of order 5 and 

converges fast especially for a very small mesh size, h.  
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