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Abstract 
A new method SWR-BMA which involves the sampling without replacement from the predictor 

variables has been proposed in Bayesian Model Averaging analysis to confront the problem 

posed by the summation over all model when the number of covariates is very large. In this 

study, an analysis was done with Gross Domestic Product (GDP) as the response variable 

and 19 predictor variables using the proposed method. A newly proposed g-prior which stems 

from the benchmark prior and Hannan-Quinn criterion was used for this analysis. The results 

of the study show that the new method compares favourably with the MCMC method and in 

some cases dominates. 
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A model can fit a data reasonably well and also provide sensible parameter estimates 

(Hoeting, Madigan, Raftery and Volinsky, 1999).  An alternative model can also provide a good fit to 

the same data but leads to substantively different parameter estimates. A procedure for choosing the 

best model of all the competing models according to some criterion is model selection. However, 

basing inference on a single selected model may be risky as conditioning on a single selected model 

ignores model uncertainty and consequently leads to the underestimation of uncertainty when making 

inferences about the quantities of interest. 

Model uncertainty has been a central problem in regression analysis and has in particular 

played a major role in economic growth and research since the 1990s, during which time a large 

number of economics literatures were written in attempt to evaluate the new growth determinants, 

(Durlauf, Johnson and Temple, 2005). Sparks, Khare and Ghosh (2015) considered posterior 

consistency for parameter estimation, rather than model selection. Bayesian Model Averaging (BMA) 

as developed by Leamer (1978), Raftery (1998), Madigan and Raftery (1994) overcomes this problem 

of uncertainty in model selection. The Bayesian Model Averaging (BMA) has become widely 

accepted, as its strength is in accounting for uncertainty involved in model selection. Thus, from a 

Bayesian perspective, the current approach to addressing the problem of model uncertainty lies in the 

method of Bayesian Model Averaging, Kaplan and Lee (2015) 

Several works have been done in this area. Annest, Bumgarner, Raftery and Yeung (2009) 

used the iterative Bayesian Model Averaging (BMA) method in applying survival analysis to 

microarray data to determine a highly predictive model of patient’s time to event (such as death, 

relapse or metastasis) using a small number of selected genes. Bayesian model averaging (BMA) has 

also been applied in estimating the association between air pollutants and fatal health outcomes (Fang, 

Li, Kan, Bottai, Fang and Cao, 2016). Kaplan and Chen (2014) investigated the use of Bayesian 

Model Averaging in propensity score analysis for quasi-experimental or observational studies. Eicher, 
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Papageorgiou and Raftery (2011) used predictive performance in Bayesian Model Averaging to assess 

the prior distributions.  

Bayesian model averaging is a method that combines the predictive densities generated by 

individual members of an ensemble, Kleiber, Raftery, Baars, Gneiting, Mass and Grimit (2010), and 

has been used in postprocessing of ensembles in forecasting weather quantities such as 2-m 

temperature, sea level pressure, precipitation, Sloughter, Raftery, Gneiting and Fraley (2007), wind 

speed, Sloughter, Gneiting and Raftery (2010), and also hydrologic streamflow (Duan, Ajami, Gao 

and Sorooshian, 2007). Sloughter, Gneiting and Raftery (2013) also extended Bayesian Model 

Averaging (BMA) methodology to use bivariate distributions to provide probabilistic forecast of wind 

vector. 

According to Piironen and Vehtari (2017), Bayesian Model Averaging is generally better on the basis 

of prediction than a single model. Lyocsa, Molnar and Todorova (2017) demonstrated that Bayesian 

Model Averaging improves results in forecasting. 

However, the implementation of Bayesian Model Averaging is difficult as summing over all 

competing models, 2k
 models is almost impractical when k  (number of independent variables) is 

large (Hoeting, Madigan, Raftery and Volinsky, 1999), Liang, Truong and Wong (2001), Steel 

(2019). Another implementation challenge with Bayesian model averaging (BMA) is the specification 

of prior probability over all parameters in all the models and the specification of prior probability of 

each model, Eicher, Pagageorgiou and Raftery (2011). 

Madigan and Raftery (1994) proposed a method of averaging over a set of models that are 

supported by the data using the Occam’s window method. They argued that if a model predicts the 

data far less well than the model which provides the best predictions, then it should be excluded. 

Again complex models which receive less support from the data than their simpler counterparts were 

excluded. The Occam’s window is among the methods implemented in the BMA R package of 

(Raftery, Hoeting, Volinsky, Painter and Yeung, 2010). Madigan and York (1995) applied a Markov 

Chain Monte Carlo (MC
3
) method to directly approximate the posterior distribution of the quantity of 

interest given the data. 

The main objective of this research is to reduce the encumbrance in the use of BMA by 

proffering a method that will address the problem of summing over all 2k
 models for large k . We 

propose a method that involves sampling without replacement from the independent variables and 

applying BMA to the generated models. This method is hereinafter referred to as SWR-BMA. 

On the specification of parameter priors, Fernandez et al (2001) have suggested prior should 

be large enough as to minimize the effect it will have on the result so as to keep the result close to 

ordinary least squares coefficients. However, Ciccone and Jarocinski (2010) demonstrated that under 

noisy data such a large prior may not accommodate the noise and this consequently may lead to over-

fitting. Eicher et al (2009) suggested a fixed value be given for priors. The uniform information prior 

has been criticized as being too conservative, Raftery (1999). In this study, we propose a prior which 

stems from the benchmark prior of Fernandez et al (2001) and Hannan-Quinn criterion of Hannan and 

Quinn (1979), and use it in the BMA analysis  
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Methodology 

Bayesian Model Averaging 

Bayesian Model Averaging accounts for the uncertainty involved in model selection. This 

approach is to make inference from a posterior distribution defined on the model space. If   is the 

quantity of interest such as a future observation or the utility of a course of action, and 

 1,..., lM M M  denotes the set of all models considered, then the posterior distribution of    

given the data D  is  
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1
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This is an average of the posterior distributions under each of the models considered weighted by their 

corresponding posterior model probabilities. The posterior probability of the model iM  is given by  
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Where  iP M  is the prior probability that iM  is the true model, and  

     | | , |i i i i i iP D M P D M P M d      is the marginal likelihood of iM  , i  is the vector of 

parameters of model iM  ,  |i iP M  is the prior density of i  under model iM ,  | ,i iP D M  is 

the likelihood. 

The posterior mean and variance are as follows: 
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where  ˆ | ,i iE D M     Raftery (1993) and Draper (1995). 

This averaging over all models enables better predictive ability than using any single model if 

performance is measured by a logarithmic scoring rule (Madigan and Raftery, 1994), Ley and Steel 

(2009).  

 

Zellner’s g prior 

Each model to be considered is of the form 

  1 1 ... k ky x x                5

  

Suppose for each individual model iM , the error term is independently and identically normally 

distributed random variable ,  20,N I  . To obtain the posterior distribution on the model 

parameters, priors are specified on the constant and error variance 
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    1iP    and    
1

2 2P  


        6 

The more important prior is placed on the regression coefficients, i  , which expresses the 

researcher’s belief about the coefficients. A conservative prior of zero mean for the coefficients is 

common, with variance,   
1

2 T

ig X X


 ,  where g  is referred to as the Zellner’s g : 

    
1

2| 0, T

i ig N g X X 


         7 

A small g implies that the researcher is indeed certain that the coefficients are zero, while a large g 

indicates researcher’s uncertainty about zero coefficients. The posterior distribution follows a t   

distribution having expected value  

    ˆ| , , ,
1

i i i

g
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g
 


        8 

Where ˆ
i   is the standard ordinary least squares estimator for model iM  . The posterior covariance is 

given by  
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Where 
2

iR  is the usual coefficient of determination for model iM  . The marginal likelihood resulting 

from this prior framework in Bayesian model averaging is 
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Model Prior 

The uniform model prior was suggested by Raftery (1998), and George and McCulloch (1993). It 

assigns equal prior probability to all 2k
 models, so that   2 k

iP M  .  

 

Sampling without Replacement-Bayesian Model Averaging (SWR-BMA) 

Let k  be the number of independent variables. A random sample of size s without replacement from k 

independent variables with r replications will yield r different models with s independent variables 

each. 

  sy X e             11 

where sX X  is the design matrix with s  independent variables. Thus, we have 
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for 1,...,i n , the number of observations. 

A BMA is run on the r   models, and the post mean averaged over all the r   models.   

A simple random sample of size 6 was drawn without replacement from the 19 predictor variables, 

with 24 replications. The generated models were then used for the analysis.   

 

Averaging-g-prior (av-g-prior) 

The av-g-prior which sets  

   
321

max , ln
2

g n k n  
 

      13 

was employed in a comparative analysis of different parameter priors, and performed creditably better 

in some cases than the uniform information prior (UIP), Hannan-Quinn criterion (HQ) and benchmark 

prior (BRIC), John, Adiele and Nwabueze (2019). In this study, the av-g-prior is used on the two 

methods: MCMC and SWR-BMA. 

 

Results and Discussion 

In this work, we have used data obtained from Central Bank of Nigeria statistical bulletin having 

gross domestic product (GDP) as the response variable and 19 predictor variables which are described 

as follows: industrial output (INDQ), money supply (MS), gross fixed capital formation, credit to 

private sector (CPS), recurrent expenditure (RECEX), balance of payment (BOP), savings (SAV), 

stock market capitalization (SMC), external reserve (EXTR), external debt (EXTDT), income tax 

(INCTX), unemployment (UEMP), financial deepening (FD), oil price (OILP), domestic debt 

(DOMD), inflation (INF), exchange rate (EXCR), capital expenditure (CAPEX), lending rate (LR). 

Analysis of this data using the Markov Chain Monte Carlo (MCMC) method and the SWR-BMA give 

the result below. In both methods we have use the newly introduced g-prior. 

 

Table 1: Post Mean and Standard Deviation 
variable PIP AvPostMean postSD 

indQ 

ms 

gfcf 

cps 

recEx 

bop 

sav 

smc 

extR 

extDt 

incTx 

uemp 

fd 

oilp 

domD 

inf 

excr 

capEx 

lr 

0.97762 

0.30312 

0.58257 

0.22894 

0.71154 

0.20455 

0.26861 

0.32365 

0.46694 

0.14758 

0.55209 

0.16576 

0.19270 

0.19591 

0.32710 

0.14160 

0.17378 

0.18320 

0.14675 

3.59793 

0.33892 

0.00501 

0.11701 

7.44779 

-0.00012 

0.51695 

0.17701 

0.09737 

-0.01139 

0.00251 

-10.28151 

-10.37443 

0.54180 

1.28388 

-0.26410 

-1.31057 

0.34953 

-1.93531 

0.83428 

0.76503 

0.00401 

0.47288 

3.23975 

0.00045 

1.28751 

0.25571 

0.09574 

0.11259 

0.00146 

53.89658 

141.0305 

2.52806 

1.72679 

7.92463 

9.24437 

2.18442 

30.52152 

 

Table 1 gives the result of the BMA analysis of the data using the proposed method. Column 2 is the 

posterior inclusion probability; column 3 is the averaged posterior mean and column 4 is the posterior 

standard deviation 
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Table 2: Post Mean and Standard Deviation (MCMC) 
variable PIP PostMean postSD 

indQ 

ms 

gfcf 

cps 

recEx 

bop 

sav 

smc 

extR 

extDt 

incTx 

uemp 

fd 

oilp 

domD 

inf 

excr 

capEx 

lr 

0.9666 

0.3829 

0.4534 

0.1979 

0.1643 

0.1702 

0.1848 

0.1253 

0.1172 

0.1057 

0.1086 

0.0818 

0.0737 

0.0943 

0.0807 

0.0510 

0.0645 

0.0731 

0.0539 

3.34995 

0.82860 

0.00202 

-0.36996 

0.74065 

-0.000096 

0.25800 

0.02990 

0.01079 

-0.01563 

0.000088 

-4.67627 

-1.60157 

0.17857 

0.00297 

-0.15585 

-0.34547 

-0.05086 

-0.01767 

 

0.98338 

1.68692 

0.00269 

1.24501 

2.30162 

0.00027 

1.17122 

0.10953 

0.04221 

0.06929 

0.00067 

26.2901 

63.9436 

0.97112 

0.54302 

2.65144 

3.51244 

0.68208 

9.12433 

 

Table 2 gives the result of the BMA analysis using the Markov Chain Monte Carlo method. Column 2 

is the posterior inclusion probability; column 3 is the posterior mean and column 4 is the posterior 

standard deviation 

 

Table 3: Posterior Mean 
Variable MCMC SWR-BMA 

indQ 

ms 

gfcf 

cps 

recEx 

bop 

sav 

smc 

extR 

extDt 

incTx 

uemp 

fd 

oilp 

domD 

inf 

excr 

capEx 

lr 

3.34995 

0.82860 

0.00202 

-0.36996 

0.74065 

-0.000096 

0.25800 

0.02990 

0.01079 

-0.01563 

0.000088 

-4.67627 

-1.60157 

0.17857 

0.00297 

-0.15585 

-0.34547 

-0.05086 

-0.01767 

3.59793 

0.33892 

0.00501 

0.11701 

7.44779 

-0.00012 

0.51695 

0.17701 

0.09737 

-0.01139 

0.00251 

-10.28151 

-10.37443 

0.54180 

1.28388 

-0.26410 

-1.31057 

0.34953 

-1.93531 

 

Table 3 gives a comparison of the posterior mean of the proposed method and Markov Chain Monte 

Carlo method. Column 2 shows results of MCMC method while column 3 the result of theproposed 

method. Here, similarities in posterior mean of some variables namely indQ, gfcf, bop, extDt and inf 

as obtained from MCMC method and SWR-BMA method can be observed. This can be seen clearly 

in Table 6. 
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Table 4: Posterior Standard Deviation 
Variable MCMC SWR-BMA 

indQ 

ms 

gfcf 

cps 

recEx 

bop 

sav 

smc 

extR 

extDt 

incTx 

uemp 

fd 

oilp 

domD 

inf 

excr 

capEx 

lr 

0.98338 

1.68692 

0.00269 

1.24501 

2.30162 

0.00027 

1.17122 

0.10953 

0.04221 

0.06929 

0.00067 

26.2901 

63.9436 

0.97112 

0.54302 

2.65144 

3.51244 

0.68208 

9.12433 

0.83428 

0.76503 

0.00401 

0.47288 

3.23975 

0.00045 

1.28751 

0.25571 

0.09574 

0.11259 

0.00146 

53.89658 

141.0305 

2.52806 

1.72679 

7.92463 

9.24437 

2.18442 

30.52152 

 

Table 4 gives a comparison of the posterior standard deviation of the proposed method and the 

Markov Chain Monte Carlo method. The similarities in posterior standard deviation of variables gfcf, 

bop, sav, incTx and extDt as obtained from the two methods were observed here and can be clearly 

seen in Table 7. However, SWR-BMA method has smaller standard deviation in some variables 

namely, indQ, ms, cps, with values 0.8343, 0.7650, 0.4729 respectively as compared with MCMC 

method which has values 0.9834, 1.6869, 1.2450 respectively 

 

Table 5: Posterior Inclusion Probability (PIP) 
Variables MCMC SWR-BMA 

indQ 

ms 

gfcf 

cps 

recEx 

bop 

sav 

smc 

extR 

extDt 

incTx 

uemp 

fd 

oilp 

domD 

inf 

excr 

capEx 

lr 

0.9666 

0.3829 

0.4534 

0.1979 

0.1643 

0.1702 

0.1848 

0.1253 

0.1172 

0.1057 

0.1086 

0.0818 

0.0737 

0.0943 

0.0807 

0.0510 

0.0645 

0.0731 

0.0539 

0.97762 

0.30312 

0.58257 

0.22894 

0.71154 

0.20455 

0.26861 

0.32365 

0.46694 

0.14758 

0.55209 

0.16576 

0.19270 

0.19591 

0.32710 

0.14160 

0.17378 

0.18320 

0.14675 

 

Table 5 gives a comparison of the posterior inclusion probability of the proposed method and the 

Markov Chain Monte Carlo method. Table 5 shows that SWR-BMA has higher posterior inclusion 

probabilities (PIP) in all the variables except ms.  The sum of the posterior inclusion probabilities for 
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the new method agrees with the mean number of regressors in the each model, and five variables have 

PIPs that are approximately greater than or equal to 0.5. 

 

Table 6: Similarities in Posterior Mean 
variables MCMC SWR-BMA 

indQ 

gfcf 

bop 

extDt 

inf 

3.35 

0.002 

-0.0001 

-0.015 

-0.16 

3.59 

0.005 

-0.0001 

-0.011 

-0.26 

 

Table 7: Similarities in Posterior Standard Deviation 
Variables MCMC SWR-BMA 

gfcf  

bop 

sav 

incTx 

extDt 

0.003 

0.0003 

1.17 

0.001 

0.07 

0.004 

0.0004 

1.28 

0.001 

0.11 

 

Conclusion 

When the number of predictor variables is large, the use of BMA is usually faced with a big challenge 

as the summation over all the competing 2k
 models becomes almost impractical. The results in this 

study has shown that this challenge can be overcome by using SWR-BMA which reduces the number 

of models to be summed over and also achieve a good result as compared with MCMC method. The 

proposed g-prior also shows a reliable non informative prior in this work and suits the proposed 

method well. 
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